
Distributed and Parallel Computer Systems

CSC 423

Spring 2021-2022

Lecture 10

Processes in Distributed Systems

Instructor

Dr / Ayman Soliman



27/4/2022 2

➢Contents

1) Introduction to Threads

2) Context Switching

3) Design Issues for Threads Packages  

4) Implementing a Threads Package  

5) System Models 

6) Allocation Models 

Dr/ Ayman Soliman



27/4/2022 3

❑Introduction to Threads

➢ We build virtual processors in software, on top of physical

processors:

➢ Processor: Provides a set of instructions along with the capability of

automatically executing a series of those instructions.

Dr/ Ayman Soliman



27/4/2022 4

❑Introduction to Threads

➢ Thread: A minimal software processor in whose context a series of

instructions can be executed.

o Saving a thread context implies stopping the current execution

and saving all the data needed to continue the execution at a later

stage.

➢ Process: A software processor in whose context one or more threads

may be executed.

➢ Executing a thread, means executing a series of instructions in the

context of that thread.

Dr/ Ayman Soliman



27/4/2022 5

❑Context Switching

➢ Processor context: The minimal collection of values stored in the

registers of a processor used for the execution of a series of

instructions (e.g., stack pointer, addressing registers, program

counter).

➢ Thread context: The minimal collection of values stored in registers

and memory, used for the execution of a series of instructions.

➢ Process context: The minimal collection of values stored in registers

and memory, used for the execution of a thread

Dr/ Ayman Soliman



27/4/2022 6

❑Context Switching 

➢ Threads share the same address space.

➢ Process switching is generally more expensive

o each Process has its own address space.

➢ Creating and destroying threads is much cheaper than doing so for

processes.

Dr/ Ayman Soliman



27/4/2022 7

❑Threads 

➢ In many distributed systems, it is possible to have multiple threads of

control within a process.

➢ multiple threads of control sharing one address space but running in

quasi-parallel

Dr/ Ayman Soliman



27/4/2022 8

❑Threads 

➢ For example, a file server that occasionally has to block waiting for

the disk. If the server had multiple threads of control, a second thread

could run while the first one was sleeping.

➢ It is not possible to achieve this goal by creating two independent

server processes because they must share a common buffer cache,

which requires them to be in the same address space.

Dr/ Ayman Soliman



27/4/2022 9

❑Threads 

➢ Each process has its own program counter, its own stack, its own

register set, and its own address space.

➢ Each thread runs strictly sequentially and has its own program

counter and stack to keep track of where it is. Threads share the CPU

just as processes do:

➢ first one thread runs, then another does (timesharing).

Dr/ Ayman Soliman



27/4/2022 10

❑Threads 

➢ Threads can be in any one of several states: running, blocked, ready,

or terminated.

Dr/ Ayman Soliman



27/4/2022 11

❑Thread Usage 

➢ Threads were invented to allow parallelism to be combined with

sequential execution and blocking system calls.

➢ Consider our file server example again. One possible organization is

shown in Fig. Here one thread, the dispatcher, reads incoming

requests for work from the system mailbox.

➢ After examining the request, it chooses an idle worker thread.

➢ The dispatcher then wakes up the sleeping worker.

Dr/ Ayman Solimanteam model pipeline model



27/4/2022 12

❑Thread Usage  

➢ The team model is also a possibility. Here all the threads are equals,

and each gets and processes its own requests. There is no dispatcher.

➢ Threads can also be organized in the pipeline model of previous In

this model, the first thread generates some data and passes them on

to the next thread for processing. The data continue from thread to

thread, with processing going on at each step.

Dr/ Ayman Soliman



27/4/2022 13

❑ Design Issues for Threads Packages 

➢ 1.Thread management

o Two alternatives are possible here, static threads and dynamic

threads.

o With a static design, the choice of how many threads there will be

is made when the program is written or when it is compiled. Each

thread is allocated a fixed stack. This approach is simple, but

inflexible.

o Threads can be terminated in one of two ways. A thread can exit

voluntarily when it finishes its job, or it can be killed from

outside.

Dr/ Ayman Soliman



27/4/2022 14

❑ Design Issues for Threads Packages  

➢ 2.Access to shared data is usually programmed using critical regions,

to prevent multiple threads from trying to access the same data at the

same time.

o One technique that is commonly used in threads packages is the

mutex.

o A mutex is always in one of two states, unlocked or locked. Two

operations are defined on mutexes. The first one, LOCK, attempts

to lock the mutex. If the mutex is unlocked, the LOCK succeeds

and the mutex becomes locked in a single atomic action.

o A thread that attempts to lock a mutex that is already locked is

blocked.
Dr/ Ayman Soliman



27/4/2022 15

❑ Design Issues for Threads Packages   

➢ Another operation that is sometimes provided is TRYLOCK, which

attempts to lock a mutex.

➢ If the mutex is unlocked, TRYLOCK returns a status code indicating

success.

➢ If the mutex is locked, TRYLOCK does not block the thread.

Instead, it returns a status code indicating failure.

o when the thread holding the resource frees it. it calls wakeup,

which is defined to wakeup either exactly one thread or all the

threads waiting on the specified condition variable.

Dr/ Ayman Soliman



27/4/2022 16

❑ Implementing a Threads Package  
➢ There are two main ways to implement a threads package: in user

space and in the kernel.

➢ Implementing Threads in User Space

o The kernel knows nothing about them.

o The threads run on top of a runtime system, which is a collection

of procedures that manage threads.

o When a thread executes a system call, goes to sleep.

o User-level threads allow each process to have its own customized

scheduling algorithm.

➢ user-level threads packages have some major problems.

o First among these is the problem of how blocking system calls are

implemented.

Dr/ Ayman Soliman



27/4/2022 17

❑ Implementing a Threads Package  

➢ when a thread wants to create a new thread or destroy an existing

thread, it makes a kernel call, which then does the creation or

destruction.

➢ To manage all the threads, the kernel has one table per process with

one entry per thread. Each entry holds the thread's registers, state,

priority, and other information.

➢ In addition, if one thread in a process causes a page fault, the kernel

can easily run another thread while waiting for the required page to

be brought in from the disk (or network).

Dr/ Ayman Soliman



27/4/2022 18

❑Scheduler Activations 

➢ Scheduler activations combine the advantage of user threads (good

performance) with the advantage of kernel threads (not having to use

a lot of tricks to make things work).

➢ The goals of the scheduler activation work are

o to mimic the functionality of kernel threads,

o with the better performance and greater flexibility.

Dr/ Ayman Soliman



27/4/2022 19

❑System Models 

➢ In a distributed system, with multiple processors, The processors in a

distributed system can be organized in several ways that the

workstation model and the processor pool model, and a hybrid form

encompassing features of each one.

➢ The Workstation Model

o The workstation model is straightforward: the system consists of

workstations (high-end personal computers) scattered throughout

a building or campus and connected by a high-speed LAN,

Dr/ Ayman Soliman



27/4/2022 20

❑Workstation Model 

➢ In some systems the workstations have local disks and in others they

do not.

➢ The last-mentioned are universally called diskless workstations, but

the former are variously known as diskful workstations, or disky

workstations, or even stranger names.

Dr/ Ayman Soliman



27/4/2022 21

❑The Processor Pool Model  

➢ An alternative approach is to construct a processor pool, a rack full

of CPUs in the machine room, which can be dynamically allocated to

users on demand.

Dr/ Ayman Soliman



27/4/2022 22

❑Queueing system 

➢ A queueing system is a situation in which users generate random

requests for work from a server.

➢ When the server is busy, the user's queue for service and are

processed in turn.

➢ Common examples of queueing systems are bakeries and airport

check-in counters.

Dr/ Ayman Soliman



27/4/2022 23

❑Queueing system 

➢ Queueing systems are useful because it is possible to model them

analytically.

➢ Let us call the total input rate 𝜆 requests per second, from all the

users combined. Let us call the rate at which the server can process

requests 𝜇. For stable operation, we must have 𝜇 > 𝜆.

➢ It can be proven that the mean time between issuing a request and

getting a complete response, T, is related to 𝜇 and 𝜆 by the formula

𝑇 =
1

𝜇 − 𝜆

Dr/ Ayman Soliman



27/4/2022 24

❑Processor Allocation 

➢ In all cases, an algorithm is needed for deciding which process

should be run on which machine.

➢ For the workstation model, the question is when to run a process

locally and when to look for an idle workstation.

➢ For the processor pool model, a decision must be made for every

new process.

Dr/ Ayman Soliman



27/4/2022 25

❑Allocation Models 

➢ All published models assume that the system is fully interconnected,

that is, every processor can communicate with every other processor.

Dr/ Ayman Soliman



27/4/2022 26

❑Processor Allocation 

➢ Processor allocation strategies can be divided into two broad classes.

➢ In the first, nonmigratory, when a process is created, a decision is

made about where to put it. Once placed on a machine, the process

stays there until it terminates. It may not move.

➢ In contrast, with migratory allocation algorithms, a process can be

moved even if it has already started execution. While migratory

strategies allow better load balancing, they are more complex and

have a major impact on system design.

Dr/ Ayman Soliman



27/4/2022 27

❑Processor Allocation  

➢ Another worthy objective is minimizing mean response time.

➢ For example, the two processors and two processes Processor 1 runs

at 10 MIPS; processor 2 runs at 100 MIPS but has a waiting list of

backlogged processes that will take 5 sec to finish off.

➢ Process A has 100 million instructions and process B has 300

million.

➢ The response times for each process on each processor (including the

wait time) are shown in the figure.

Dr/ Ayman Soliman



27/4/2022 28

❑Design Issues for Processor Allocation Algorithms  

➢ The major decisions the designers must make can be summed up in

five issues:

1. Deterministic versus heuristic algorithms.

2. Centralized versus distributed algorithms.

3. Optimal versus suboptimal algorithms.

4. Local versus global algorithms.

5. Sender-initiated versus receiver-initiated algorithms.

Dr/ Ayman Soliman



27/4/2022 29Dr/ Ayman Soliman


